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Abstract. A formulation of supersymmetric quantum mechanics in terms of sesquilinear 
forms is presented. Otherwise occurring rather complicated domain questions are solved 
in a simple and natural way. We formulate the axioms and describe a number of models. 
Supersymmetry transformations are implemented as superunitary transformations in a 
space defined over a Grassmann algebra; generalised Bogoliubov transformations acting 
in that space are also formulated. 

1. Introduction 

Since the invention of supersymmetric field theoretical models [ 13, a steadily increasing 
literature exists on that subject and a number of reviews, books and conference reports 
are available [2-lo]. The most striking aspect of supersymmetry concerns the fact that 
one relates bosonic degrees of freedom to fermionic ones. In other words, fields 
obeying the canonical commutation relations (CCR) are connected to fields obeying 
canonical anticommutation relations (CAR). Usually anticommuting parameters are 
introduced and transformations are formulated in an appropriate superspace. The 
main developments were connected to a study of field theoretical models, the most 
exciting result being the observation that there are models where no ultraviolet divergen- 
ces show up. 

The common treatment of bosons and fermions leads to a gradation of the underlying 
Hilbert space. The generators of supersymmetry mapping from even to odd states and 
vice versa are assumed to fulfil a Lie superalgebra. These algebraic aspects have been 
intensively studied since the early days. Soon after the invention of supersymmetry 
the most general possible generators for such symmetries of the S matrix were obtained 
[ 111. Afterwards many people studied especially the structure of Lie superalgebras 
and their representations [ 12-17]. A complete classification of the simple Lie superalge- 
bras was obtained [12]. The main questions, which are still not completely settled, 
concern the notion of supermanifolds [ 181 and Lie supergroups. 

Besides the study of complicated systems with infinite degrees of freedom, a study 
of systems with a finite number of degrees of freedom may shed some light on 
supersymmetric models. Witten was the first to initiate such studies [ 191; the problem 
of supersymmetry breaking for quantum mechanical models was extensively discussed 
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4266 H Grosse and L Pittner 

in [20], and the strong restrictions imposed on Hamiltonians for supersymmetric 
quantum mechanics (SSQM) were worked out in [21]. Afterwards special properties 
of models were studied by a number of authors; let us mention only two recent 
contributions [22, 231. 

We shall concentrate in this paper on the principal formulation of SSQM. In order 
to formulate quantum mechanics for f bosonic and f fermionic degrees of freedom, 
we work in the tensor product of the appropriate Hilbert spaces. A Klein-Jordan- 
Wigner transformation allows us to relate this space to a Hilbert space X' built over 
a Grassmann algebra (P 2). With the help of Grassmann variables we transform the 
CCR to the CAR. Bounded operators are obtained because we have to divide through 
by the square root of the partial Hamiltonians (P 3). 

We realise that an axiomatic framework of SSQM can be formulated in terms of 
sesquilinear forms rather than as operator equations restricted to an appropriate 
invariant common core as was proposed in [24]. 

Let X'= X o @  XI be the decomposition of the space 5%'' into an orthogonal sum 
of two infinite-dimensional subspaces 2%'' and XI; the elements of X o  and 2' are 
called even and odd, respectively. Denote by No and N I  = 1 - N o  the corresponding 
projection operators onto X o  and X' and introduce the Klein operator K = No - N I .  

Axiom 1 .  Assume that there are given self-adjoint operators Q" = Q n t ,  n = 1 , .  . . , N, 
and a non-negative Hamiltonian H, such that 

( Q " ) 2 =  H, domQ" = dom = 9, n = l ,  ..., N. ( 1 . 1 )  

Axiom 2. Assume that these observables fulfil the anticommutation relations 

( Q " 9 I Q " @ ) + ( Q " 9 I Q f l @ ) = 0  n f m  9, @ €  9. (1 92) 

Axiom 3. Assume that the observables Q", n = 1 , .  . . , N, map states from X o  to states 
of XI and vice versa 

( Q " 9 I K @ ) + ( K 9 1 Q Q " @ ) = O  9 ,@€9.  (1.3) 

Therefore H is reduced by both X o  and XI and 

( H 9 1  K @ ) + ( K 9 1  H @ ) = O  W,@€dom X 
follows. If 9 is an invariant domain for K with K 9  E 9, it follows that K dom( Q " ) p  c 
dom( Q " ) P  for p = 2,3, .  . . , and especially K * dom H E  dom H holds. 

The physical interpretation of SSQM is based on the fact that eigenstates of No are 
called bosonic ones whereas eigenstates of N I  are called fermionic; Q" are called 
supercharges, H is a non-negative Hamiltonian and the Klein operator can be written 
as K =(-1)"i. 

From an algebraic point of view one therefore studies representations of the Lie 
superalgebra S ( N )  in a separable Hilbert space 2' which is 2, graded due to the 
projection operators No and N I .  

Spectral properties of H are derived easily from the above axioms. For the energy 
spectrum of any supersymmetric model one obtains 

ap(H)\{O) = ap(HNo)\{OI = up(HNi)\{O). (1.5) 
Thus the restrictions of H to the bosonic and fermionic subspaces are 'essentially 

isospectral' [25]: except for a possible eigenvalue zero the point spectra of HN, and 
HN, coincide and the dimensions of their corresponding eigenspaces coincide as well. 
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In order to be able to formulate supersymmetry transformations we introduce 
anticommuting parameters in 0 5. To be consistent these parameters have to be 
introduced also in the scalar product for the wavefunctions and the operators. We 
remark that they play a quite different role compared to the Grassmann variables 
mentioned before. They are not integrated over in the scalar product. They may be 
taken outside a scalar product by using the Klein operator. This property has been 
noted previously by van Hove [26] and more recently in [27] where supersymmetric 
models at finite temperatures are discussed. In order to obtain properties of the 
supertrace, the Klein operator turns out to be useful [28]. 

Supersymmetry transformations are treated in 0 6 and generalised Bogoliubov 
transformations mixing even and odd elements are dealt with in 0 7. These transforma- 
tions turn out to be superunitary. Finally we treat representations of the Lie superalge- 
bras S ( N )  for general N by self-adjoint operators in a Hilbert space in § 8. 

We have given a rigorous and self-contained treatment of SSQM in this paper. The 
consequences for an infinite number of degrees of freedom are under investigation. 

2. Grassmann algebra for f non-relativistic fermions 

The Grassmann algebra GI of polynomials in f anticommuting variables E ~ ,  . . . , E,, 

over the field of complex numbers 63, is an associative superalgebra with unit I and 
general element 

with c,,, ell, ,,, E @. It follows that the dimension of G, is 2, [29]. 

an even (odd) number of variables &k, k = 1, . . . ,f: 

operator d k  = a/aEk acting on monomials as 

An element 5 E G, is called even (odd), if it is a linear combination of products of 

The derivative from the left with respect to Ek  is defined by linear extension of the 

dkEiI . . . E t p  = 8 k i , & , ,  . . , &I, - 8kc2&llP13 . * +. . . + (-1)P-18klp&ll . . . & l p - l .  (2.2) 

This endomorphism of G, is a graded derivative [15, 171 since 

a k  (67) = (a,'$) 7 + (-1 ) d e " 6 ( a k 7 )  k =  1,. . . , f (2.3) 

where deg 6 = 0  if 
The Grassmann algebra G j  of polynomials in the anticommuting variables d l  , . , . , a, 

can be combined with Gf and yields a Clifford algebra K, of polynomials in the 2f 
variables Ek,  dk, k = 1,. . . ,f, which obey the anticommutation relations [29] 

is even and deg t =  1 if 6 is odd. 

Ek)={ai,dk)=o {&I, ak) = 8ik1 i, k =  1 , .  , , ,f: (2.4) 

With 6 defined in (2.1) and 7 similarly with coefficients d,,  ,p and do we define a 
scalar product by 

( 2 . 5 )  

G, becomes thus a unitary space of dimension 2, Definition (2.5) implies the 
relation 

a k  = E :  a k  + &k and i(ak - E ~ )  are self-adjoint k = 1, .  . . ,f: (2.6) 
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Replacing the complex coefficients by x-dependent wavefunctions leads to the 
separable Hilbert space 2, = L 2 ( 6 x ) 0 G f  with elements * and scalar product (910): 

The Hilbert space 2, is isomorphic to the f-fold tensor product of x-dependent 
Pauli spinors, since the isomorphism 

\ J =  L2(d’x)@C2’ = L2(dfx)0Gf (2.8) 
(L2(d1x)OC2) 0. . .O ( L2(d’x)0C2) 

f times 

holds. This may be deduced by starting from Pauli spin matrices and using a Klein- 
Jordan-Wigner transformation [30] 

( - U ; ) =  w:= w;’ k = 2 , .  . . , f w, = I 
i = l  

c k  = wk = wku, ci = a: wk = wka: k =  1,. . . , f (2.9) 

U ;  = 1 2 0 .  . .0 1 2 0  U’@ 1 2 0 .  . .0 I2 
1 2 = ( ;  ;) t 

k 

and U; defined similarly. These spin matrices fulfil the canonical anticommutation 
relations (CAR) 

{ct, c k ) = o  { C I ~  ci> = 8 i k I  i, k = 1, . . . , f (2.10) 

and CLCk = U i U ;  = ( I  + Ui)/2.  
The isomorphism (2.8) is now defined such that 

C k - d k  = c : w & k  k =  1,. . . ,f: (2.11) 

The decomposition of G, into orthogonal subspaces of even and odd elements 
determines a Z2 grading of Gf. By (2.8) one obtains a grading of 2, = 27CBLfj with 
orthogonal projectors No and NI = I - No onto bosonic and fermionic subspaces, 
respectively. K = No - N1 = I - 2 N 1  defines then the Klein operator [26, 271, which is 
used in the axiomatics of supersymmetric quantum mechanics (SSQM).  By means of 
the spectral resolution of the fermionic projector NI one can also express K = ( - ) N 1 .  

As an example we get for f = 2, No= I -a l&,  - a 2 ~ 2 + 2 a l ~ l a 2 ~ 2 .  
L2(d’x) may be replaced by any separable Hilbert space 2, and 2, is then replaced 

by 2, = X0 G, = XTO Xi. 

3. Fermionic oscillator 

The linear operators 

Bk =(Xk+a/aXk)J2 B: = (xk -a/ax,./J2 k = l , .  . . ,f (3.1) 

on L2(dfx) are closed on dom B: = dom Bk = dom xk n dom pk, withp, = -ia/axk. They 
fulfil the canonical commutation relations (CCR) 

[Bi, B k l = O  L B , ,  B:l = SikI i, k = 1,. . . ,J: (3.2) 
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The bosonic energies, defined as form sums 

B:Bk = ; ( p i  X i )  -+I = BkBL - I k = l ,  ...,f (3 .3)  
are self-adjoint on dom B:Bk = dom BkB:, with spectrum a ( B i B k )  = {o , I ,  2,.  . . }. 
Adding the spin-flip energies CLCk one obtains the Hamiltonian operator [21,31] 
defined as a form sum in -rt; [32-341 

f 

H = C  Hk Hk = B:Bk -k c:ck =;(Pi + X i )  ++ai 3 0. 

Q;k)=Hk [ Q k k ,  Hkl=o k = l , .  . . ,J: ( 3 . 5 )  

(3.4) 
k = l  

The 'partial supercharges' Qkl = BkCi with Qil  = 0 fulfil the Lie superalgebra 

Their sum yields the supercharge 
f f 

Q = J 2  c Q k k = J 2  c BkCtk=(Q'+iQ2)/J2 (3 .6)  
k = l  k = l  

and Since Qkk -I- Q:k and i(Qkk - QLk) are self-adjoint On dom Bk@C2' [25,35], the 
supercharges Q' and Q2 are self-adjoint on 

f 

k = l  
dom HI'' = dom Q' = dom Q 2  = dom Bk@C2' (3.7) 

due to the criteria used in § 4. 
These supercharges give a representation of the Lie superalgebra S(2)  in 2,: 

( Q 1 ) *  = ( Q2)' = H 

(0, Q? = 2H Q 2 = 0  thus [Q,  Hl=O 

{ Q ' ,  0'1 = 0 

or ( 3 . 8 )  

where all relations hold in the sense of forms (see §§ 4 and 6) .  

to 2; and vice versa: 
Use of ( 2 . 8 )  and (2 .11 )  shows that Q and Q' (denoted by Q " )  transform from 2; 

Q W O  = q1 Q " q I  = q0 WO€ 2; q1€ 2; (3.9) 
and [ K ,  HI = 0 since { K, Q " }  = 0,  in the sense of forms. This last anticommutator, 
together with the Liesuperalgebra S(2) ,  is significant for SSQM. 

3 0 and the definition 

B;  = &kBk/H:I2 [ H k ,  &kBk 1 = 0 II B ;  I1 1 k =  l , . .  . ,f (3.10) 

one may transform the CCR, ( 3 . 2 ) ,  to the C A R  

Using the notation Hk = B:Bk + 

{ Bi, B;} = 0 { B ; ,  BL'} = 8,kI i, k =  1, .  . . ,J: (3 .11 )  

We note that the commutators in (3.2) and (3.10) should be understood in the sense 
that spectral projections of the operators involved commute. 

From the uniqueness of representations of the CAR for finite degrees of freedom 
we deduce that the bounded operators B;  can be decomposed orthogonally into 
matrices which are unitarily equivalent to a+, with respect to the spectral resolution 

In order to decribe the connection between the CAR and CCR for any representation 
of the superalgebra S ( 2 )  in terms of self-adjoint operators, one needs so-called anticom- 
muting parameters (see § 5). 

Of Hk. 
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4. Generalisation of the bosonic observables 

We used the bosonic operators Bk in order to construct a representation of the CCR 

and in order to get the Hamiltonian for the fermionic oscillator (3.4). More generally 
they may be replaced by closed operators Gk which are densely defined in %' and 
yield a representation of S (  2) by self-adjoint supercharges in the tensor product space 
%',= XOC,. To start with we quote first the following lemma. 

Lemma 1. Let Gl  and G2 be linear operators which are closed and densely defined 
in %'. The tensor products Dk=C:Gk+CkGL, k = l ,  2, on g l = d o m D l =  
(dom G:@C2)@(dom G I O C 2 ) ,  9 , = d o m  D2= (dom G l O d o m  Gz)@C2, are self- 
adjoint in %'@C4. Here and in the following the isomorphism (2.8) is used without 
explicitly referring to it. 

The proof of this lemma follows from the well known implication [25,35]. Let A be 
closed and densely defined in H ;  the tensor product r + A +  r -A '  is then self-adjoint 
on dom A'Odom A in %'@C'. 

The generalisation of lemma 1 to the case o f f  fermions leads to a second lemma 

Lemma 2. Let Gk, k = 1 , .  . . ,f; be closed and densely defined operators in 2. The 
operators 

D k  = EkGk + d k G i  dom Dk = g k  k = l ,  ...,f (4.1) 

are self-adjoint on their natural domains in Z,. 

Restricting our attention, for the moment, again to the case of two fermions on the 
real line, leads to the following theorem. 

Theorem 1. Let Gk and Dk, k = 1,2, be defined as in lemma 1. Define the symmetric 
operator Q' = D, + D2 on 9 = dom Q' = 9' n a2 and assume that 

(G:+lG24)-(G:+lGl4)=0 (4.2) 

(4.3) 

holds for + E dom G: n dom G2 and 4 E dom GI n dom G:, then the operator sum Q' 
is closed. 

Proof: One follows [36 ]  where it is shown with A and B closed the sum A +  B is closed 
on dom A n  dom B if and only if there exists y > 0 such that 

( A + I  A+)+(BJII  B+F A(A+ B)+ I ( A +  B)+)+ Y / I  CCI / I 2  (4.4) 

holds for + E d o m A n  dom B. Denoting A = D , ,  B = D 2  and l - l / y = a < l  thus 
proves theorem 1. 
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Remark. In order to establish that Q' has the properties of a supercharge we need 
further assumptions. Let Gk and D,, k = 1,2,  be defined as in lemma 1 and Q' as in 
theorem 1 .  The self-adjoint non-negative Hamilton operator 

(4.5) 
-- 

H = Q"? on dom H = {9 E dom Q ' ,  Q ' 9  E dom Q"} 
- - 

on the form domain dom HI'* = dom Q' is an extension of (0')'. Here Q' denotes 
the closure of the symmetric operator 0'. If dom ( Q')2 is a core for H ,  Q' is essentially 
self-adjoint in X@C4 [37]. In order to verify that ( Q ' ) 2  is essentially self-adjoint on 
some suitable core for H ,  one may use Wust's theorem [33,34]. 

Corollary 1. Under the assumptions of theorem 1 similar conclusions hold for the 
symmetric operator 

Q 2 = i  2 ( C , G : - C : G k )  dom Q2 = dom Q' = dom H"'. (4.6) 
k = 1 , 2  

Moreover, one obtains the algebra 

If dom (3)' is a core for H ,  Q' is self-adjoint. 

Q"Q' = Q"Q* = H ( Q I 9  I Q'@) + ( Q 2 9  1 Q'@) = 0 @,9€9. (4.7) 

Remark. Under the assumptions of theorem 1 it follows that we obtain a representation 
of the Lie superalgebra S ( 2 )  in XOC4: 
( Q 1 ) 2 = ( Q 2 ) 2 =  H Q' = Q" Q' = Q" 

(4.8) 
(QI9 I Q 2 @ ) +  ( Q 2 Y  0'0) = 0 

A special model of SSQM in two dimensions is obtained by choosing A ( x , ,  x 2 )  and 
V ( x , ,  x 2 )  as absolutely continuous functions of x l ,  x 2  E R, and then defining 

@, 9 E dom Q' = dom Q' = dom H 1'2. 

a 
Gk = ( i r k  + V k ) / J 2  rk = Pk + A k  A ,  =- A(x,, x') 

a X k  
(4.9) a v, = - V(X1, x2) k = l , 2 .  

a x k  

Again (4.4) may be used to deduce that Gk is closed on dom Gk = domp, n 
dom Ak n dom V, if and only if there exists a positive a < 1 such that 

in the sense of forms on dom G,. 

such that rk is self-adjoint on dom r k  = dom pk, we may define 
If A, is relatively bounded with respect to Pk with relative bound less than one 

H i = ~ i - i -  V' ,={Gk,  G : }  
(4.11) 

a a 
ax, ax, 

V,k=- Vk- v k - = [ G , ,  GL]=[Gk ,  G : ]  i , k = l , 2  

in the sense of form sums, form dom HL = form dom V,, = dom pk n dom V, = 
dom Gk E dom G: ,  and G: I d o m G I  = ( - i r k  + vk)/J2. Then inequality (4.3) follows from 
the two estimates 

I v : , l ~ z - ( o / 2 ) ( H : +  V ' , + H ; T  V") (4.12) 
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for some positive a < 1 .  Thus Q' is closed if (4.12) holds in the sense of forms on 
dom p1 n dom VI n dom p 2  n dom V2. 

Wiist's theorem [33,34] may be used to prove essential self-adjointness of Q' as 
well. Take A,  = A2 = 0 and assume that V, E Lfo,(R2), k = 1,2,  such that V:+ Vi E 

L;,,(R2); then 

(4.13) 

is essentially self-adjoint [33]. If the four estimates 

II (* VI 1 * V22)+ II s Y II HA4 II + P II CL II for all + E dom HA (4.14) 

hold with 0 < y s 1,  p > 0, where HA = H i  4 H i  is the unique self-adjoint extension of 
HA, then 

4 

H , = D ; + D i =  0 H,k on dom HA'* = dom Q' (4.15) 
k = l  

is essentially self-adjoint on C2(R)OC4. If, moreover, the two estimates 

II v 1 2 ~ i i 2 ~ ~  I I + I I ~ + ( ~ / ~ ) I I H , ~ ~ I I ~  o < y s  1 ,  p > o  (4.16) 

hold for all + E  dom H,k, k = 2,3,  then ( Q1)21c;(R~)8,C4 is essentially self-adjoint. In this 
case Q' is also essentially self-adjoint [37]. If the re- bounds y in both estimates 
(4.14) and (4.16) are less than one, both H,, and (Q ' )*= (9')' are self-adjoint on 
dom ( H i  4 H i )  [32-341. Therefore if (4.12) is fulfilled too, self-adjoint supercharges 
Q' and Q2 exist. 

For more than two fermions,f= 3 , 4 , .  . . , proposition (4.4) cannot be used. Instead 
of (4.4) one may apply the K L M N  theorem [32,33]. One considers the symmetric 
operator 

f f 
on d o m Q 1 = n  d O m D k = B  (4.17) 

k = l  
Q 1 =  C Dk 

k = l  

where Dk are the closed densely defined operators of (4.1). The form sum 

defines the non-negative operator D on dom D = 9. If  there exists a positive a < 1 
such that 

1 c (Dtvl Dk9)l a ( D 9 1  D 9 )  for all 9 E 9 (4.19) 

then there exists a non-negative operator H = H i  on dom H I / ' =  9, such that for @, 
9 € 9  

(4.20) 

i + k  

( H " 2 9  1 = (09 I D @ )  + c (D,+ I Dk@)  = (Q19 I Q1@) 
i f k  

holds. Therefore Q' is closed and H = Q"Q'. 

Theorem 2. Let Dk, k = 1 , .  . . ,f, and Q' be defined as in (4.1) and (4.17). Assume that 

(4.21) 
(GrlLI Gk4)=(G:$I Gtd~) 

4 E dom G, n dom Gk + E dom G?  n dom G: 
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holds for i ,  k = 1 , .  . . ,t If  
f 

2Re 2 ( (G:d ,q l  Gh’k*)-(Gkdtql Gtakq)) 1 s a  2 (IIdkGLq 1 1 2 + ( /  &kGkq\YI2) 1 r < k  k = l  

(4.22) 

with O <  a < 1, then Q’ is closed. If, furthermore, dom(Q’)* is a core for H = Q’’Q’,  
then Q’ is self-adjoint in XI .  

Corollary 2. Under the assumptions of theorem 2, the same conclusions hold for the 
operator 

Q 2 = i  c (akG:-&kGk) on dom Q’= dom Q’ = dom HI” (4.23) 

and the- algebra (4.7Lholds on the form domain dom H”’. If, especially, both 
dom ( Q1)2 and dom ( Q2)2  are cores for H, then the self-adjoint supercharges Q’, Q 2  
fulfil the following self-adjoint representation of the Lie superalgebra S(2) in X f  : 

( Q1)2 = ( Q2)2 = H 
In addition, the Klein operator K = No - NI fulfils the anticommutation relations 

( K P  1 Q k @ )  + ( Qk‘U I K 0) = 0 

which imply that 

f 

k = l  

(Q’W 1 Q2@) + ( Q2q I Q 1 @ )  = 0 @, W E dom H’”. (4.24) 

for @, q E dom H’/2 k =  1, 2 (4.25) 

( K  W I H @ )  - (HW I K @) = 0 for @, W E dom H. (4.26) 

Let the differential operators Gk be densely defined, generalising (4.9) with locally 
absolutely continuous superpotentials V ( x , ,  . . . x f )  and A ( x , ,  . . . , x f )  obeying (4.10), 
k = 1, . . . f; assume that Ak is relatively bounded with respect to P k  with relative bound 
less than one. The inequality (4.22) follows from the estimates 

f 
2 1 v k  I v k k )  k =  1,. . . , f O < C u < l  (4.27) 

in the sense of forms on n f ,=, dom P k  n dom v k .  The corresponding Hamilton oper- 
tator in Tf is given by 

1 = l  
r # k  

(4.28) 

on 
f f 

d o m H L ” = d o m Q I = d o m Q 2 = n  d O m D k = n  d o m G k @ G f  
k - I  k = l  

with 

dom Gk = dom P k  n dom vk. 

In order to investigate whether Q’ is essentially self-adjoint one may again proceed 
in two steps. Assume that vk E L~,,(R’), k = 1,. . . , A  such that 
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is essentially self-adjoint. The estimates (4.14) can be generalised to the 2/ inequalities: 

(4.30) 

This implies that H,= D:+. . . + D j  is essentially self-adjoint on C,"(Rf)OGf. A 
suitable set of - 2 sufficient conditions in order to have ( Q1)2 essentially self-adjoint 
on C:(@)OGf is given by 

I1 (* VI 1 * . . . * V,) (I, II Y II HA$ II + P II (I, I1 for all (I, E dom HA 

O < y S I  p>o.  

l = k , <  <k ,= f  

~ P l l $ l 1 2 + ( Y / 4 ) l l  c (H:--YJ(I,+ c (H:+VlJ(I,Il* (4.31) 
i # k l  k ,  i = k ,  k ,  

r =  1,. . . , f - 1 O < y S l  P'O 
with the componen- o f x e d o m  H,. If y in (4.30) and (4.31) are less than one, 
then both Ho and ( Q')' = (9')' are self-adjoint on the domain 

dom H,, = dom [ (- 2) + V: 4. . .i (- <) + V j ]  0 Gf. 
ax/ 

The automorphism of the superalgebra (4.24) which is generated by the third 
component 1 of the total spin of f  fermions 

(4.32) 

gives an integral of motion 

(E@ 1 HY)  - ( H @  1 19) = 0 

Of, = EkGk +akG: = Dk 

Hk = I (  Ti 4 v', + v k k ( r i )  = G:Gk + V k k E k d k  

@, 9 E dom H. 

= i(dkGi - EkGk) 

(4.33) 

The 'partial supercharges' 

(4.34) 

together with the Hamiltonians 

0 (4.35) 

satisfy the Lie superalgebra S(2) for each k = 1, . . . ,fi If especially K k  = &Vkk, i, k = 
1, . . . ,f, then the 3f operators Qi, Qi and Hk, k = 1, . . . ,f, generate a Lie superalgebra 
with the only non-zero supercommutators {QL, QL} = 2Hk, i = 1,2, and in this case the 
form sum 

f 
H k = H  

k = l  

gives the total Hamiltonian. 

5. Anticommuting parameters 

We introduce the Grassmann algebra g2 of polynomials in the anticommuting variables 
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0 ,  and O2 with complex coefficients and define an involution by the following rules: 

0 2  1 -  - 0 2  2 -  - 0 0,0,+@;0, = o  @* 1 - 0 1  - 0; = 0, 

(0,0,)* = 020, 0 = 0, + i0, @ * = @ , - i 0 2  
(5.1) 

0 2  = a*’= 0 @** = 0 0*0 = 2 i0 ,02  

(co+c,0,+c,02+c1,0102)* = c , * + c ~ 0 , + C ~ O , + C ~ , 0 ~ @ , .  

The tensor product of this Grassmann algebra g2 with the Clifford algebra K,, of 

The Hilbert space X’ is extended to a 9,-modul [38] with general element 
polynomials in &k and a,, k = 1,  . . . , J  is an associative superalgebra over @. 

9 = ~ 0 + 0 1 ~ 1 + 0 2 9 2 + 0 1 @ 2 ~ ~ 2  9 O ,  91, q2, 912 E Xf. ( 5 . 2 )  

These anticommuting parameters are also introduced into the scalar product accord- 

( @ ‘ ( c , 0 , + c , 0 , ) 9 ) = ( ( c T o l + c T @ , ) ~ ~ ~ ) = ( c , 0 , + c 2 0 , ~ ( ~ ~ / ~ )  

(@ 1 0 1 0 2 9 )  = 0102(O I *) for @ , 9 E X ’  
( 5 . 5 )  

holds. Note that there is CO integration over 0,  included. 
We illustrate these rules by the following examples: 

-@,(4l$) (5 .6 )  

( E ~ @ * ~ I O ~ F ~ $ ) = ( O * ~ ~ ~ ~ O ~ E ~ $ ) =  -(0*4j0,$)= -(4/oo2$)=O,0,(~)$) (5 .7)  

for 4, $ E %’. 
Linear operators in 2’ are extended too, since linear combinations with anticommut- 

ing parameters 01, 02, d / d O ,  and a/a@, as coefficients may occur. The derivatives 
from the left a / a @ ,  and 8 / 8 0 ,  are to be understood as odd endomorphism of the 
Grassmann algebra 9,, similarly as in (2.2), but are no? the ‘adjoints’ of 0,  and 0,. 

To be consistent one has to require that the left derivatives 8 / 8 0 , ,  j = 1,2 ,  anticom- 
mute both with the fermionic operators &k and dk, k = 1,. . . ,f: 

The notion of trace may be generalised in two different ways (cf [28]). Start with 
an orthonormal basis {O,, ; n E N }  for X’, with grading P,, = 0 or 1 if @,, E 2; or X), 
respectively. Assume that the operators T, T I ,  T2, T12 are trace class in X’ [32,34]. 
We then define a supertrace and a trace by 

str( T + 0 , T]  + 0, T, + 0~0,  T , ~ )  = C (- 1 ) O p t (  @,, 1 ( T + o I T,  + e2 T, + 0 , 0, T,~)@, , )  
m 

, , = I  

=str T + @ ,  tr T,+O,tr  T,+@,@,str T,, ( 5 . 8 )  
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tr(OjT,) = Oj(On I KT,O,) = Oj  str T, f o r i  = 1,2. (5 .9 )  
n = l  

One easily verifies the following rules: tr T = str T = 0 if T is an odd endomorphism 
of XI and trace class; str { S ,  T }  = 0 for Hilbert-Schmidt operators S and T if at least 
one of them is odd; str [ S ,  TI = 0 for even Hilbert-Schmidt operators S, T. 

Furthermore, one obtains 

str [O, TI,  @,T,] = O,O, str { TI,  T,} = 0 

for odd Hilbert-Schmidt operators TI, T2 

str{O,T,, S }  = Oj  tr[ T,, SI = 0 

(5.10) 

(5.11) 

for Hilbert-Schmidt operators S,  T,, j = 1,2, if S is odd. These rules are easily derived 
from the relations 

str T = tr( K T )  tr T = str(KT) (5.12) 

with T being trace class on X'. 

6. Supersymmetry transformations 

In order to define an appropriate group of supersymmetry transformations [ 39-42] 
one has to convert the anticommutators of the fermionic operators, like the super- 
charges, to commutators using anticommuting parameters [3,39]. We introduce the 
supercharges Q and Q' 

Q = (0' + iQ2) /J2  

Q' 2 (0' - iQ2) /J2  

dom Q = d o m  Q 1 = d o m  Q 2 = 9  

dom 0'2 dom Q 
Q" = 6 (6.1) 

as linear combinations of the self-adjoint supercharges Q' and Q2. The Lie superalgebra 
(4.24) is now equivalently written as 

(0'91 Q'O)+(QVI QO)=2(H1'2V/ 

(Q'VI QQ) = 0 

(Q''P'1 HO')=(H'P ' (QO')  

0, V E dom HI" = dom Q 

Or, V' E dom H. 

This can be transformed to Lie algebra relations using the anticommuting parameters 
defined above. In terms of forms we get 

(O*Q'VIO*Q'@)-(QOV~ QOO)=2@O*(H1"'P/ HL'*O) 

(O*Q"PI QOO)=O O , T E d o m  Q 

(O*Q'Y'/ HO') = (HY'I QOO') O', V' E dom H. 

(6.3) 
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Supersymmetry transformations are now defined as sesquilinear forms on dom Q by 

g ( t ,  s, r )  = exp(itH +is@ + is*O*Qt + irHOO*) 

= exp(itH) exp(irHOO*) exp(isQ0 + is*O*Q+) 

= exp(itH)(Z+irHOO*+isQO+is*O*Qt-fjs12{Q0, o*Q+}) (6.4) 

for t and r real, and s complex. The composition law in terms of these parameters 
becomes 

g (  t,  s, r ) g (  t ' ,  s', r' )  = g (  I " ,  s", r") 

with (6.5) 

t " =  t + f '  s " = s + s '  r"= r + r ' + 2  Im(s ' . s*)  

These transformations are 'superunitary' in the following sense: 

g ( t ,  s, r ) +  = g ( t ,  s, r1-I = g ( - t ,  -s, - r )  t, r E R  S E C .  (6.6) 

Instead of su ercharges from (4.1) we may insert the partial supercharges 

In order to formulate the transformations generated by the Lie superalgebra { Q k ,  
QL, Hk ; k = 1, .  , . , f }  for the case with V,, = 0 for k # i, i, k = 1, . . . ,f; one needs 
anticommuting parameters Ok = 0: +io," with (Of)* = 0," for j = 1,2,  k = 1, . . . , f ;  in 
that case one obtains the direct product o f f  supergroups of type (6.4). 

We remark on one problem. The exponentials of expressions with anticommuting 
parameters are defined as power series and in fact become polynomials. Therefore, 
superunitary transformations from above need not be defined on the whole of Xfr for 
example, 

(6.7) 
is defined for any WO€ X f ,  but with W1, q2, WI2 only in the sense of distributions. But 
sesquilinear forms like, for instance, 

(6.8) 
with W E X', @ E dom Q, @'E dom H, are well defined. 

We notice that, although both &k and 0, are anticommuting elements, they play 
quite different roles within the framework of SSQM: whereas &k are bounded operators 
on X f  with adjoints E :  = d k  and allow us to distinguish between bosons and fermions, 
0, and 0, are used only as additional coefficients. The latter not only allow us to 
define supergroup transformations, as indicated above, but enable us also the define 
generalised Bogoliubov transformations which mix elements of CCR and CAR. 

Qk = (0: +io;) /  ,ip 2 defined in 8 4. 

W(f,  s, r )  = g ( t ,  s, r ) W o = e x p ( i t H ) W o + 0 1 W I / ' + 0 ~ W 2 + 0 1 0 ~ W \ Y ' 2  

(H@'lOO*W)=OO*(H@'IW) ( Q@ I OW) = 0( Q@ I K W) 

7. Generalised Bogoliubov transformation 

We consider again the CCR (3.2) and the CAR (2.10) and use the isomorphism (2.11) 

[ B , ,  Bkl = 0 [ B , ,  BL1 = 8 , k l  [ B ! ,  & ! , l = [ B : ,  & k l = O  
(7.1) 

Next we introduce a Grassmann algebra 9 = Bo@ 9, of polynomials in the anticom- 
muting variables S I ,  . . . , Sd over C, and assume these variables to anticommute both 

{ & a ,  & k } = O  E:} = 8 , k l  i ,  k =  1, .  . .,f: 
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with &k and E ;  = a k  for k = 1 , .  . . ,J: 9o and gI denote the even and odd subspace of 
the Lie superalgebra 9. Now we can define linear transformations of the form 

P , k a n d P , k € ~ ~ ;  f f ,kandU,kE~a, ;  i = 1 ,  ...,f: (7.2) 1 
f 

E :  = (PikBk +(+tk&k)  
k = l  

1 

k = l  
E : =  c (",kBk+Ptk&k) 

These combinations with anticommuting parameters as coefficients may be defined 
either on the intersection 93 = r) {=, dom B, OGf or on their common invariant domain 
Cr(d)OGf ,  where C?(@) is a common invariant core for B, and Er, i = 1,. . . ,J: 

On the Grassmann algebra 9 an involution is defined by 

6: = ai i =  1, .  . . , f 
(as')* = 6'*6* a** = 6 6 , 6 ' €  9. 

( 7 . 3 )  

With the help of this involution, the notion of adjointness is extended to 
f f 

Bit= ( p z B : - c ~ $ d k )  E : + =  ("lB;+p:ak) i =  1 , .  . . ,J: (7.4) 
k = l  k = l  

These definitions imply the relations 

[ B i ,  E ; ]  = [Bit, B c ]  = 0 { E ; ,  & ; } = { E ; + ,  &;}=O 

[ B ~ , E ; ] = [ B ~ ~ , E ; ' ] = O  i , k = l ,  . . . , J :  
In order to conserve the CCR and CAR we use the implications 

f 
[ B; ,  B;'] = 6ikI iff c ( pvp;i;.+ u,u;T;) = 6,kI 

j =  1 

(7 .5)  

f 
{&:, &;+} = 6,J iff c ("o"~+ppIJp?,)=~ikI (7.6) 

J = 1  

f 
[ B : ,  E ~ I = [ B : + ,  E ; ] = O  iff (p,,a;T;+a,pf,)=O. 

J = l  

The non-zero commutators are defined on n {= dom( x i  + p i )  0 G, or on the common 
invariant core C:(@)OGf or as forms on 93. These constraints allow us to define an 
isomorphism by mapping the adjoint & i t  to the derivative from the left a :  = a/&: for 
i =  1, .  . , ,f: 

The transformation (7 .2)  may be written in matrix notation as 

(7.7) 

and the constraints (7.6) can be written as a 'superunitarity' condition 



Supersymmetric quantum mechanics dejined as sesquilinear forms 4279 

One may again define supercharges and a transformed Hamiltonian by 

(7.9) 
J 

H ' =  (B:+B:+E;a; )H '+ .  
2 = I  

Since the transformation (7.2) conserves the C C R  and CAR the new operators again 
yield a representation of the Lie superalgebra S ( 2 ) :  

{Q' ,  Q"} = 2 H '  (7.10) 

As an example, we take the case of one bosonic and one fermionic degree of 
freedom, f = 1 .  The constraints 

(7.11) 

01.7 = Q I t 2  = 0 [ Q', H ' ]  = [ Q", H'IO. 

pp * + uu* = CYCY * + pp * = I p. * + up* = 0 

may be fulfilled by choosing 

(7.12) 

then one obtains 

Q ' / J 2  = ( I  - 2 i 6 , S 2 ) ~ B  - - (SI  - i6,)B' 

H '  = H'' = ( I  + 4iS1S2) B t  B + ( I  - 4ia1 6,) 

Q " / J 2  = ( I  -2i6,S,)aB' - ( a1 + i6,)Bi2 

+ 4iSl S2 + 2( a1 + i 6 2 ) ~ B t  - 2( 61 - iS2)d B. 
(7.13) 

In this case the anticommuting parameters S1, 6, may be identified with those in 
the definition of supertransformations, S1 = a,, 6* = 02,  0 6. As a matrix representation 
for them, one may use the Klein-Jordan-Wigner transformed Pauli matrices E = C:,  
a = C,, 0 ,  = C , ,  0, = C,. Obviously, the choice (7.12) is not the most general one. 

For f =  1 ,  one could also simply choose 

I -6  
T = (  -6 ') I S = S *  s2=o T ' = ( 6  I )  (7.14) 

which implies, using { E ,  6 )  = {a, S }  = 0, that 

B'=  B + &  

The corresponding supercharges are 

(7.16) 

A simple choice for a superunitary transformation off bosonic andf fermionic degrees 
of freedom is given by 

(7.17) B;  = Bk + 6kEk E L  = E k  - 6kBk k =  1 , .  . . ,"f 
Especially one may use only one anticommuting variable 6 = 6* and take 

(7.18) 

Therefore choosing d = 1 is  always possible. 
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The transformation (7.17) can be performed using the supergroup of superunitary 
transformations 

f 
g(s)=exp(i  (szB;Sk&k+SkBkaksk ) S k E @  

k = l  
(7.19) 

g(s)+ = g(s)- '  = g(-s) g(s)g(s ')  = g(s  + s')  

on the domain 3 = nf,=, dom &@Gf. One obtains 

i =  1 , .  . . ,f g(s)B,g(-s) = B, -isTS,E, 
g(s)E,g(-s) = E ,  - iS,S,B, 

(7.20) 

on appropriate domains. 

8. Representation of S ( N )  by self-adjoint operators 

In (1.1)-(1.3) we presented an axiomatic formulation for representations of the superal- 
gebra S( N )  by N self-adjoint supercharges. Special representations can be constructed 
from some finite-dimensional Clifford algebras and suitable bosonic operators [ 211, 
the latter being subject to constraints in order to guarantee that the superalgebra is 
fulfilled. 

We start with supercharges 

which are self-adjoint on 
I d  

dom Q" = 0 dom A:@V n = l ,  . . . ,  N (8.2) 

in the Hilbert space % @ C P ' .  The above-mentioned constraints can be written in terms 
of the real Clifford algebra with negative metric 

{On, @m}=-26,,Id O" = O n *  @ " @ " ' = I d  n, m = 1,. . . , N- 1 (8.3) 

where the superscript t denotes the transposed matrix. The equations 

1 = 1  k = l  

d 

A$= 1 @:,A; 

together with the 'integrability conditions' 

i = l ,  . . .  f ;  k = l ,  . . . ,  d ;  n = l ,  . . . ,  N (8.4) 
] = I  

(A: 51, I AT 4 ) - ( AT 51, I A :' 4 ) = (A; 51, I A?A! 4 )  - 51, I A;4 ) (8.5) 
fora l l4 ,+Ef l{=,  n : = , d o m A : = d a n d i , j = l ,  . . . ,  f ; k , l = l ,  . . . ,  d , m , n = l ,  . . . ,  N 
and m # n imply the superalgebra S(  N )  in the sense of forms. Here we have used the 
fact that each linear combination in (8.4) contains just one term, which implies that 
dom Q' = . . . = dom QN, as postulated in (1.1). 

The irreducible representations of the Clifford algebras (8.3) are all explicitly 
tabulated in the literature [21], they occur modulo 8, and one finds the ten possibilities 
which are listed in table 1. 
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Table 1. n e  ten possibilities of the irreducible representations of the Clifford algebras (8.3). 

N d r P 

2 2 1 2 
3 4 1 4 
4 4 2 4 
5 8 1 16 
6 8 1 16 
7 8 1 16 
8 8 2 16 
9 16 1 1 62 
Here r denotes the number of inequivalent 
irreducible representations, p = 24, q = d / 2 .  

Thefdegrees of freedom, which were introduced in (8.1), are obtained as anf-fold 
direct sum of such Clifford algebras of type (8 .3) ,  each of them occurs with the same 
d, but dependent on N. 

8.1. Case N = 2  

With the definitions 

& k  = ( Y k l  -k iYk2)/2 a k  =(Ykl-iYk2)/2=&: 
(8 .6 )  

Gk = (A;, -iAL2)/J2 k = l ,  ...,f 
where Gk are assumed to be closed (see necessary and sufficient conditions (4.4)), one 
obtains the model which was discussed in § 4. Assumption (8.2) is fulfilled for this 
model if dom Gk = dom G: for k = 1, .  . . ,f; then 

G: = (ALl +iAL2)/42 f o r k = l ,  . . . , J :  (8.7) 
The Clifford algebra (8.3) contains one element, say O ' = i u 2 .  The special choice 
A:, = v k ,  A:, = Tk, k = 1, .  . . ,J  was investigated in $ 4 .  The integrability conditions 
(8.5) imply that the assumption (4.21) is fulfilled. 

8.2. Case N = 4  

We use the irreducible representation 

0' = u3@i(r2 O2 = iu2@ I* a3 = g'@iu2 (8.8) 
an inequivalent representation is obtained by permuting 0' and 02. A generalisation 
of the model, which was presented in 9 4, is obtained by assuming that the following 
sums of operators are closed: 

G:k = (A:k-iA:k+2)/42 n , k = 1 , 2 ; i = l ,  . . . ,  f 
(8.9) 

Denoting Q" = Q: and Qn+' = Q', for n = 1,2,  we get the four self-adjoint supercharges 
&,k = (yrk +iy,k+2)/2 a i k  = ( Y i k  - i Y , k + 2 ) / 2  = &:k. 

f 2  

Q: = c (&,kG:k+alkG:k+) 
r = l  k = l  

n = l , 2  (8.10) 
f 2  

= i  c (atkG:;- &,kG:k). 
1 = 1  k = l  
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Here again we need that dom GYk = dom GY; in order to fulfil (8.2). This implies that 

iGf: = Gf2 G:: = iGf, i =  1,. . . ,"f (8.11) 

In order to investigate whether the supercharges Q", n = 1 , .  . . , N, are self-adjoint 
on the domain (8.2) for some special models [21], one may again use the K L M N  theorem 
[32, 331 and apply theorems of Wust [33,34] or of Kato-Rellich [32-341 to treat 
perturbations. 

If the estimate 

(8.12) 

i # i ' a n d / o r  k + k  

holds for all V E  d @ C P '  with 0 < a < 1,  Q" is closed. If the non-negative operator 

(8 .13)  

defined as form sum on dom HA'' = d is essentially self-adjoint on some suitable core 
CO, and if ( Q")2-  Ho is relatively bounded with respect to Ho with relative bound 
y s 1,  then ( Q")2 is essentially self-adjoint on Co. In the case of self-adjoint super- 
charges Q", n = 1,  . . . , N, for y < 1,  the corresponding Hamilton operator is given by 

(8.14) 

dom H = dom Ho dom HI/'= dom Q" = dom HA/2 n = l ,  . . . ,  N. 

8.3. Cases N = 4, 6 and 8 

Here, supersymmetry transformations may be defined as direct products of transfor- 

(8.15) 

(8.16) 
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These anticommutation relations can be converted to commutation relations 
analogously as for the case N = 2 (6.3) using anticommuting parameters 0" = 
O;+iO;,O"*=O;-iO;, O t * = O t ,  k = 1 , 2 ,  n = l ,  . . . ,  N / 2 :  

( e * Q A ~  1 om * Q;@) - ( Q,,, om 9 I Q, 0" @) = 26,, on om *( H 1 H I / * @ )  

(O"*QI,91 Omom@) = (Om*Q;91 Q,W@) 
n, m = 1,. . . , N / 2 .  

The corresponding group of supertransformations defined in the sense of forms on 
dom H"' by 

for @,9 E dom H ' I2  (8.17) 

gN(f,S1,...,SN./2,rlr...,rN/2) 

N / 2  
(s ,Q,On+S~On*QI ,+rnHOnOn*)  

= e x p ( i W  g ( 0 ,  S I ,  11) . . d o ,  s N / 2 ,  ~ N / Z )  t ,  r, E R  s, EC (8 .18)  

turns out to be the direct product of N / 2  supergroups of the type (6.4), and superunitar- 
ity holds in the sense that 

(8.19) 
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